Product Description
06HP 132kw Direct Driven VSD Stationary Screw Air Compressor with Low Noise
Water lubricated oil free compressor-technical parameters:
| Model | Work pressure | Capacity | Power | Noise | Inlet and outlet diameters of cooling water | Water inlet & outlet T/H |
Lubricating water L |
Dimensions | Weight | Air outlet diameter
|
| WZS-06PMA | 8.5 | 0.3~0.78 | 5.5 | 57 | 3/4″ | 1.5 | 10 | 800x800x1100 | 460 | 3/4″ |
| 10.5 | 0.2~0.65 | |||||||||
| WZS-08PMA | 8.5 | 0.35~1.17 | 7.5 | 57 | 3/4″ | 2 | 10 | 800x800x1100 | 510 | 3/4″ |
| 10.5 | 0.3~1.05 | |||||||||
| 12.5 | 0.24~0.81 | |||||||||
| WZS-11PMA | 8.5 | 0.54~1.72 | 11 | 60 | 1″ | 2.5 | 26 | 1200x800x1300 | 620 | 3/4″ |
| 10.5 | 0.45~1.42 | |||||||||
| 12.5 | 0.35~1.10 | |||||||||
| WZS-15PMA | 8.5 | 0.75~2.43 | 15 | 60 | 1″ | 3.5 | 26 | 1200x800x1300 | 670 | 1″ |
| 10.5 | 0.65~2.17 | |||||||||
| 12.5 | 0.6~1.85 | |||||||||
| WZS-18PMA | 8.5 | 0.9~3.13 | 18.5 | 63 | 1″ | 4 | 30 | 1400x1000x1520 | 730 | 1″ |
| 10.5 | 0.9~2.82 | |||||||||
| 12.5 | 0.6~2.05 | |||||||||
| WZS-22PMA | 8.5 | 1.1~3.62 | 22 | 63 | 1 1/2″ | 5 | 30 | 1400x1000x1520 | 780 | 1″ |
| 10.5 | 0.97~3.21 | |||||||||
| 12.5 | 0.85~2.78 | |||||||||
| WZS-30PMA | 8.5 | 1.55~5.12 | 30 | 66 | 1 1/2″ | 7 | 40 | 1500x1150x1500 | 1150 | 1 1/2″ |
| 10.5 | 1.255~4.43 | |||||||||
| 12.5 | 1.1~3.63 | |||||||||
| WZS-37PMA | 8.5 | 1.91~6.30 | 37 | 66 | 1 1/2″ | 9 | 40 | 1500x1150x1500 | 1200 | 1 1/2″ |
| 10.5 | 1.60~5.33 | |||||||||
| 12.5 | 1.42~4.77 | |||||||||
| WZS-45PMA | 8.5 | 2.50~8.30 | 45 | 68 | 1 1/2″ | 10 | 90 | 1800x1300x1750 | 1490 | 2″ |
| 10.5 | 1.91~6.30 | |||||||||
| 12.5 | 1.70~5.56 | |||||||||
| WZS-55PMA | 8.5 | 3.0~9.76 | 55 | 69 | 1 1/2″ | 12 | 100 | 1800x1300x1750 | 1570 | 2″ |
| 10.5 | 2.60~8.55 | |||||||||
| 12.5 | 2.30~7.67 | |||||||||
| WZS-75PMA | 8.5 | 3.95~13.00 | 75 | 72 | 1 1/2″ | 18 | 100 | 1800x1300x1750 | 1750 | 2″ |
| 10.5 | 3.40~11.50 | |||||||||
| 12.5 | 3.0~9.70 | |||||||||
| WZS-90PMA | 8.5 | 5.0~16.60 | 90 | 73 | 1 1/2″ | 20 | 120 | 2200x1550x1800 | 2450 | 2 1/2″ |
| 10.5 | 4.30~14.66 | |||||||||
| 12.5 | 3.72~12.60 | |||||||||
| WZS-110PMA | 8.5 | 6.0~19.97 | 110 | 77 | 1 1/2″ | 24 | 120 | 2200x1550x1800 | 2580 | 2 1/2″ |
| 10.5 | 5.0~16.66 | |||||||||
| 12.5 | 4.65~15.56 | |||||||||
| WZS-132PMA | 8.5 | 6.75~22.52 | 132 | 77 | 2″ | 30 | 120 | 2200x1550x1800 | 2700 | 2 1/2″ |
| 10.5 | 6.0~19.97 | |||||||||
| 12.5 | 5.07~16.90 | |||||||||
| WZS-160PMA | 8.5 | 8.5~28.11 | 160 | 79 | 3″ | 35 | 160 | 3000x1800x2100 | 3900 | 3″ |
| 10.5 | 706~25.45 | |||||||||
| 12.5 | 6.7~22.52 | |||||||||
| WZS-185PMA | 8.5 | 10~33.97 | 185 | 79 | 3″ | 38 | 160 | 3000x1800x2100 | 4050 | 3″ |
| 10.5 | 8.72~29.00 | |||||||||
| 12.5 | 7075~25.210 | |||||||||
| WZS-200PMA | 8.5 | 11.2~36.75 | 200 | 80 | 4″ | 42 | 200 | 3100x1850x2100 | 4200 | 4″ |
| 10.5 | 9.68~32.78 | |||||||||
| 12.5 | 9.2~29.24 | |||||||||
| WZS-220PMA | 8.5 | 12.2~39.67 | 220 | 80 | 4″ | 47 | 200 | 3100x1850x2100 | 4400 | 4″ |
| 10.5 | 11.2~36.75 | |||||||||
| 12.5 | 9.0~29.63 | |||||||||
| WZS-250PMA | 8.5 | 13.5~44.78 | 250 | 80 | 4″ | 53 | 200 | 3100x1850x2100 | 4800 | 4″ |
| 10.5 | 12.3~39.67 | |||||||||
| 12.5 | 10.2~33.97 |
Before quotation:
1.Before quoting, what should users offer?
1).Discharge pressure (Bar, Mpa or Psi)
2).Air discharge/Air flow/Air capacity (m3/min or CFM)
3).Power supply (220/380V, 50/60Hz, 3Phase)
2.If I don’t know the pressure and air flow, what should I do?
1).Take the picture of nameplate, we will advise the suitable air compressor to you.
2).Tell us what industry you are, we can advise the suitable 1 (so as to air tank / air dryer / air filters).
SHIPPING
Delivery: time 5-25 working days after payment receipt confirmed(based on actual quantity)
packing:standard export packing. or customized packing as your
Professional: goods shipping forwarder.
FAQ
Q: OEM/ODM, or customers logo printed is available?
Yes, OEM/ODM, customers logo is welcomed.
Q: Delivery date?
Usually 5-25 workdays after receiving deposit, specific delivery date based on order quantity
Q: what’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, otherpayment terms also can be discussed based on our cooperation.
Q: How to control your quality?
We have professional QC team, control the quality during the mass production and inspectthe completely goods before shipping.
Q: If we don’t have shipping forwarder in China, would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.
Q: come to China before, can you be my guide in China?
We are happy to provide you orservice, such as booking ticket, pick up at the airport, booking hotel, accompany visiting market or factory
Thank you very much for viewing this page, and wish you a nice day!
Contacts: Pasha Teng
Mob: -173-1757-2798 /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2024-02-09