Product Description
The ultimate smart solution driven by efficiency
Atlas Copco’s GA compressors bring you outstanding sustainability, reliability and performance, while minimizing the total cost of ownership. A choice of 3 premium compressor types (GA VSD+, GA+ and GA) provides you with the compressed air solution that perfectly matches your requirements with clear value propositions. Built to perform even in the harshest environments, these compressors keep your production running efficiently.
GA
Premium compressor
- High performance Free Air Delivery.
- Premium quality at the lowest initial investment.
- Integrated refrigerant dryer.
- Elektronikon Touch or Swipe controller.
GA+
Industry-leading performance
- Best-in-class Free Air Delivery.
- Lowest energy consumption for applications with a stable air demand.
- Low noise emission suitable for workplace installation.
- Integrated refrigerant dryer.
- Elektronikon Touch controller.
GA VSD+
Ultimate energy saver
- 50% energy savings on average compared to fixed speed models.
- iPM motor equals IE5 standards.
- In-house designed NEOS inverter and iPM motor exceed IES2 (EN 5571) requirements for power drive efficiency.
- Industry-leading operating turndown range.
- Wide pressure selection: 4-13 bar.
- Start under system pressure, no blow-off.
- Integrated refrigerant dryer.
- Elektronikon Touch controller
Atlas Copco G series Screw Air Compressor
Model: G15L Series
Features & benefits
Simple installation & maintenance
• Available in multiple configurations, including floor or tank-mounted.
• Extremely small footprint with possible placement against a wall or in a corner.
• Main components, oil separator and filter are easily accessible.
Simple installation & maintenance
• Available in multiple configurations, including floor or tank-mounted.
• Extremely small footprint with possible placement against a wall or in a corner.
• Main components, oil separator and filter are easily accessible.
Easy monitoring & control
• Icon-based display, pressure settings, temperature reading.
• Running hours/hours working @ load.
• Service warnings.
• Outlet pressure setting directly on the controller.
• Pressure and element outlet temperature reading.
Technical Parameters:
| Compressor type | Max. working pressure | Capacity FAD* | Installed motor power | Noise level** | Weight*** | ||||||||||||||||
| WorkPlace | WorkPlace Full Feature | FM | FM FF | TM | TM FF | ||||||||||||||||
| bar(e) | psig | bar(e) | psig | l/s | m³/hr | cfm | kW | hp | dB(A) | kg | kg | kg | kg | ||||||||
| 50 Hz VERSION | |||||||||||||||||||||
| G 15L | |||||||||||||||||||||
| 7.5 | 7.5 | 108.8 | 7.3 | 105 | 42.5 | 153.0 | 90.1 | 15 | 20 | 67 | 313 | 371 | 537 | 595 | |||||||
| 10 | 10 | 145.0 | 9.8 | 141 | 38.5 | 138.6 | 81.6 | 15 | 20 | 67 | 313 | 371 | 537 | 595 | |||||||
| 13 | 13 | 188.5 | 12.8 | 185 | 31.2 | 112.3 | 66.1 | 15 | 20 | 67 | 313 | 371 | 537 | 595 | |||||||
| G 18 | |||||||||||||||||||||
| 7.5 | 7.5 | 108.8 | 7.3 | 105 | 52.1 | 187.6 | 110.4 | 18 | 25 | 69 | 328 | 392 | 545 | 609 | |||||||
| 10 | 10 | 145.0 | 9.8 | 141 | 45.4 | 163.4 | 96.8 | 18 | 25 | 69 | 328 | 392 | 545 | 609 | |||||||
| 13 | 13 | 188.5 | 12.8 | 185 | 38.5 | 138.6 | 81.6 | 18 | 25 | 69 | 328 | 392 | 545 | 609 | |||||||
| G 22 | |||||||||||||||||||||
| 7.5 | 7.5 | 108.8 | 7.3 | 105 | 62.0 | 223.2 | 131.4 | 22 | 30 | 70 | 344 | 408 | 561 | 625 | |||||||
| 10 | 10 | 145.0 | 9.8 | 141 | 54.1 | 194.7 | 114.5 | 22 | 30 | 70 | 344 | 408 | 561 | 625 | |||||||
| 13 | 13 | 188.5 | 12.8 | 185 | 46.4 | 167.1 | 98.3 | 22 | 30 | 70 | 344 | 408 | 561 | 625 | |||||||
| 60 Hz VERSION | |||||||||||||||||||||
| G 15L | |||||||||||||||||||||
| 100 | 7.4 | 107 | 7.2 | 104 | 44.0 | 158.4 | 93.2 | 15 | 20 | 67 | 313 | 371 | 537 | 595 | |||||||
| 125 | 9.1 | 132 | 8.9 | 129 | 38.8 | 139.7 | 82.2 | 15 | 20 | 67 | 313 | 371 | 537 | 595 | |||||||
| 150 | 10.8 | 157 | 10.6 | 154 | 37.0 | 133.2 | 78.4 | 15 | 20 | 67 | 313 | 371 | 537 | 595 | |||||||
| 175 | 12.6 | 182 | 12.3 | 178 | 32.7 | 117.7 | 69.3 | 15 | 20 | 67 | 313 | 371 | 537 | 595 | |||||||
| G 18 | |||||||||||||||||||||
| 100 | 7.4 | 107 | 7.2 | 104 | 51.8 | 186.5 | 109.8 | 18 | 25 | 69 | 328 | 392 | 545 | 609 | |||||||
| 125 | 9.1 | 132 | 8.9 | 129 | 46.9 | 168.8 | 99.4 | 18 | 25 | 69 | 328 | 392 | 545 | 609 | |||||||
| 150 | 10.8 | 157 | 10.6 | 154 | 43.3 | 155.9 | 91.7 | 18 | 25 | 69 | 328 | 392 | 545 | 609 | |||||||
| 175 | 12.6 | 182 | 12.3 | 178 | 39.9 | 143.6 | 84.5 | 18 | 25 | 69 | 328 | 392 | 545 | 609 | |||||||
| G 22 | |||||||||||||||||||||
| 100 | 7.4 | 107 | 7.2 | 104 | 60.5 | 217.8 | 128.2 | 22 | 30 | 70 | 344 | 408 | 561 | 625 | |||||||
| 125 | 9.1 | 132 | 8.9 | 129 | 53.7 | 193.3 | 113.8 | 22 | 30 | 70 | 344 | 408 | 561 | 625 | |||||||
| 150 | 10.8 | 157 | 10.6 | 154 | 48.6 | 175.0 | 103.0 | 22 | 30 | 70 | 344 | 408 | 561 | 625 | |||||||
| 175 | 12.6 | 182 | 12.3 | 178 | 46.0 | 165.6 | 97.5 | 22 | 30 | 70 | 344 | 408 | 561 | 625 | |||||||
Oaliss’s objective is to be “Your very own system provider”. To fulfill this objective, CHINAMFG pays great attention to customer’s real needs and concerns, then provides feasible solutions. CHINAMFG chooses the most reliable suppliers from the industry and tests its performance before installing on our equipment. Product quality is our paramount goal. In the meantime, we do our best to fill the gaps between price and energy efficiency. Our equipment will be reliable enough to use and the price low enough to purchase. Combined with these distinct features, our high quality and variable products have been accepted by customers from various industries.
Oaliss-your very own system provider.
Applications:
Industrial equipment, printing service, pipelines, power plants, oil&gas, oil refinery, coating, painting,
plastics, steel industry, rubber, mechanical, blow molding, color sorter machine, shipyard, sandblasting,
metallurgy, etc.
To provide the right equipment to you, please send us your detailed requirements.
1 Q: How about the quality of products?
A: We are an authorized distributor of Atlas Copco. The quality and service could be assured.
2 Q: How long is your delivery lead time?
A: If there is stock, the lead time is about 3 working days after we get the payment if need to
be produced, it depends.
3 Q: How about your overseas after-sale service?
A: (1)Provide customers with installation and commissioning online instructions.
(2)Worldwide agents and after service available.
4 Q: Can you accept OEM&ODM orders?
A: Yes, we have a professional design team, OEM&ODM orders are highly welcomed. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2024-02-24
China manufacturer Gardner Denver Gd Oil Lubricated Screw Air Compressor Variable Speed VSD 22kw FM22RS FM 22kw FM22RS-7A FM22RS-8A FM22RS-10A FM22RS-13A with Best Sales
Product Description
Oil Lubricated Screw Compressors FM07RS-FM75RS Series Variable Speed VSD
Efficient Compact Reliable
FM Series small air compressors are designed to provide you with excellent quality main engines imported from Germany, with simple and convenient after-sales maintenance design.
Design philosophy focused on details
• Hard pipe connection for both hard and soft pipelines
• Materials such as Teflon increase the stability of the overall unit running
Efficient, stable, customizable according to specific needs
• FM07-22: TEFC, with standard IP55 rating
• FM30-75: ODP, with IP23 / IP54 ratings optional
• (IP 54 400V / 50Hz optional)
Filtering system
Efficient, high-quality, micro-oil air quality
• With nanometer filter materials, filter accuracy of up to 1μ
• Improve air quality, oil content less than 2 ppm
• New pre-filtration system reduces the air filter load
• Increase the operating life of the overall unit under complex conditions
Compact design, imported main engine, high efficiency and energy saving
• The direct drive by air end and motor of FM30-75 realizes efficient conversion of high CHINAMFG torque that protects the air end from the impact of external forces, thereby enabling more efficient and more stable operation.
• The whole series can reach national Level I, or Level II energy efficiency.
Technical Data for FM07RS-FM75RS Series Variable Speed VSD
| Model Number | Pressure(Bar) | Power(kW) | FAD1 (m3/min) | Noise Level² dB(A) | Drive | Weight (kG) | Dimensions L x W x H (mm) |
| FM07RS-7A | 7 | 7.5 | 0.45-1.13 | 70 | Belt | 225 | 667×630×1050 |
| FM07RS-8A | 8 | 7.5 | 0.46-0.98 | 70 | Belt | 225 | 667×630×1050 |
| FM07RS-10A | 10 | 7.5 | 0.43-0.95 | 70 | Belt | 225 | 667×630×1050 |
| FM07RS-13A | 13 | 7.5 | 0.45-0.77 | 70 | Belt | 225 | 667×630×1050 |
| FM11RS-7A | 7 | 11 | 0.58-1.53 | 70 | Belt | 234 | 667×630×1050 |
| FM11RS-8A | 8 | 11 | 0.52-1.41 | 70 | Belt | 234 | 667×630×1050 |
| FM11RS-10A | 10 | 11 | 0.51-1.39 | 70 | Belt | 234 | 667×630×1050 |
| FM11RS-13A | 13 | 11 | 0.49-1.07 | 70 | Belt | 234 | 667×630×1050 |
| FM15RS-7A | 7 | 15 | 1.06-2.64 | 73 | Belt | 360 | 787×698×1202 |
| FM15RS-8A | 8 | 15 | 1.01-2.46 | 73 | Belt | 360 | 787×698×1202 |
| FM15RS-10A | 10 | 15 | 0.95-2.2 | 73 | Belt | 360 | 787×698×1202 |
| FM15RS-13A | 13 | 15 | 0.89-1.73 | 73 | Belt | 360 | 787×698×1202 |
| FM18RS-7A | 7 | 18.5 | 1.37-3.15 | 74 | Belt | 380 | 787×698×1202 |
| FM18RS-8A | 8 | 18.5 | 1.35-2.96 | 74 | Belt | 380 | 787×698×1202 |
| FM18RS-10A | 10 | 18.5 | 1.29-2.66 | 74 | Belt | 380 | 787×698×1202 |
| FM18RS-13A | 13 | 18.5 | 1.31-2.25 | 74 | Belt | 380 | 787×698×1202 |
| FM22RS-7A | 7 | 22 | 1.35-3.49 | 74 | Belt | 395 | 787×698×1202 |
| FM22RS-8A | 8 | 22 | 1.05-3.23 | 74 | Belt | 395 | 787×698×1202 |
| FM22RS-10A | 10 | 22 | 0.94-3.05 | 74 | Belt | 395 | 787×698×1202 |
| FM22RS-13A | 13 | 22 | 0.98-2.59 | 74 | Belt | 395 | 787×698×1202 |
| FM30RS-7A | 7 | 30 | 1.88-5.26 | 72 | Direct | 750 | 1554×894×1505 |
| FM30RS-8A | 8 | 30 | 1.85-5.23 | 72 | Direct | 750 | 1554×894×1505 |
| FM30RS-10A | 10 | 30 | 1.81-4.52 | 72 | Direct | 750 | 1554×894×1505 |
| FM37RS-7A | 7 | 37 | 1.84-6.24 | 72 | Direct | 830 | 1554×894×1505 |
| FM37RS-8A | 8 | 37 | 1.84-6.21 | 72 | Direct | 830 | 1554×894×1505 |
| FM37RS-10A | 10 | 37 | 1.75-5.01 | 72 | Direct | 830 | 1554×894×1505 |
| FM45RS-7A | 7 | 45 | 2.83-7.57 | 76 | Direct | 900 | 1554×894×1505 |
| FM45RS-8A | 8 | 45 | 3.73-7.51 | 76 | Direct | 900 | 1554×894×1505 |
| FM45RS-10A | 10 | 45 | 2.25-6.12 | 76 | Direct | 900 | 1554×894×1505 |
| FM55RS-7A | 7 | 55 | 2.44-10.34 | 75 | Direct | 1170 | 2004×1179×1605 |
| FM55RS-8A | 8 | 55 | 2.37-10.07 | 75 | Direct | 1170 | 2004×1179×1605 |
| FM55RS-10A | 10 | 55 | 2.24-9.14 | 75 | Direct | 1170 | 2004×1179×1605 |
| FM75RS-7A | 7 | 75 | 1.82-13.5 | 78 | Direct | 1220 | 2004×1179×1605 |
| FM75RS-8A | 8 | 75 | 1.76-12.9 | 78 | Direct | 1220 | 2004×1179×1605 |
| FM75RS-10A | 10 | 75 | 1.65-11.91 | 78 | Direct | 1220 | 2004×1179×1605 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.


editor by CX 2024-02-24
China best 219/191cfm Electric Double Stage Variable Speed 30kw 40HP Vertical Screw Type 0.6MPa/0.8MPa Air Compressor for General Industry small air compressor
Product Description
Product Description
Technical Parameter
| model | air pressure | air displacement | power | noise | dimension | ||||||
| mpa | bar(e) | psi(g) | m3/min | cfm | hp | kw | dB(A) | L(mm) | W(mm) | H(mm) | |
| GAT-22A | 0.6 | 6 | 87 | 4.2 | 148 | 30 | 22 | 62-66 | 1450 | 950 | 1250 |
| 0.7 | 7 | 102 | 3.95 | 139 | |||||||
| 0.8 | 8 | 116 | 3.5 | 124 | |||||||
| 1 | 10 | 145 | 3.2 | 113 | |||||||
| 1.3 | 13 | 189 | 2.6 | 92 | |||||||
| GAT-30A | 0.6 | 6 | 87 | 6.2 | 219 | 41 | 30 | 63-67 | 1700 | 1100 | 1450 |
| 0.7 | 7 | 101 | 6.03 | 213 | |||||||
| 0.8 | 8 | 116 | 5.4 | 191 | |||||||
| GAT-37A | 0.6 | 6 | 87 | 7.1 | 251 | 50 | 37 | ||||
| 0.7 | 7 | 102 | 6.9 | 244 | |||||||
| 0.8 | 8 | 116 | 6.7 | 237 | |||||||
| 1 | 10 | 145 | 5.6 | 198 | |||||||
| 1.3 | 13 | 189 | 5.4 | 191 | |||||||
| GAT-45A | 0.6 | 6 | 87 | 8.3 | 293 | 61 | 45 | 66-70 | |||
| 0.7 | 7 | 102 | 8.01 | 283 | |||||||
| 0.8 | 8 | 116 | 7.8 | 275 | |||||||
| 1 | 10 | 145 | 6.5 | 230 | |||||||
| 1.3 | 13 | 189 | 6.2 | 219 | |||||||
| GAT-55A | 0.6 | 6 | 87 | 11.4 | 403 | 75 | 55 | 70-74 | 2150 | 1380 | 1780 |
| 0.7 | 7 | 102 | 10.8 | 381 | |||||||
| 0.8 | 8 | 116 | 10 | 353 | |||||||
| 1 | 10 | 145 | 9.3 | 328 | |||||||
| GAT-75A | 0.6 | 6 | 87 | 16 | 565 | 102 | 75 | ||||
| 0.7 | 7 | 102 | 14.2 | 501 | |||||||
| 0.8 | 8 | 116 | 14 | 494 | |||||||
| 1 | 10 | 145 | 13 | 459 | |||||||
| 1.3 | 13 | 189 | 9.5 | 335 | |||||||
| GAT-90A | 0.6 | 6 | 87 | 19 | 671 | 122 | 90 | 73-77 | 2800 | 1750 | 1900 |
| 0.7 | 7 | 102 | 18 | 636 | |||||||
| 0.8 | 8 | 116 | 16.5 | 583 | |||||||
| 1 | 10 | 145 | 16 | 565 | |||||||
| 1.3 | 13 | 189 | 13 | 459 | |||||||
| GAT-110A | 0.6 | 0.6 | 6 | 87 | 24 | 847 | 150 | 74-78 | |||
| 0.7 | 7 | 102 | 22 | 777 | |||||||
| 0.8 | 8 | 116 | 18.5 | 653 | |||||||
| 1 | 10 | 145 | 18 | 636 | |||||||
| 1.3 | 13 | 189 | 16 | 565 | |||||||
| GAT-132A | 0.6 | 6 | 87 | 26.5 | 936 | 179 | 132 | 75-79 | |||
| 0.7 | 7 | 101 | 26 | 918 | |||||||
| 0.8 | 8 | 116 | 23 | 812 | |||||||
| 1 | 10 | 145 | 22 | 777 | |||||||
| 1.3 | 13 | 189 | 18 | 636 | |||||||
| GAT-160A | 0.6 | 6 | 87 | 32.5 | 1148 | 217 | 160 | 3300 | 2050 | 2150 | |
| 0.7 | 7 | 102 | 32 | 1130 | |||||||
| 0.8 | 8 | 116 | 28 | 989 | |||||||
| 1 | 10 | 145 | 26 | 918 | |||||||
| 1.3 | 13 | 189 | 22.5 | 794 | |||||||
| GAT-185A | 0.6 | 6 | 87 | 41 | 1148 | 251 | 185 | ||||
| 0.7 | 7 | 101 | 37.92 | 1339 | |||||||
| 0.8 | 8 | 116 | 32.5 | 1148 | |||||||
| 1 | 10 | 145 | 31 | 1094 | |||||||
| 1.3 | 13 | 189 | 26 | 918 | |||||||
| GAT-200A | 0.6 | 0.6 | 6 | 87 | 43.8 | 1547 | 272 | 78-82 | |||
| 0.7 | 7 | 102 | 40.5 | 1430 | |||||||
| 0.8 | 8 | 116 | 37 | 1306 | |||||||
| 1 | 10 | 145 | 32.5 | 1148 | |||||||
| 1.3 | 13 | 189 | 30.5 | 1077 | |||||||
| GAT-220A | 0.6 | 6 | 87 | 49.5 | 1748 | 299 | 220 | ||||
| 0.7 | 7 | 102 | 49 | 1730 | |||||||
| 0.8 | 8 | 116 | 41 | 1447 | |||||||
| 1 | 10 | 145 | 36.5 | 1289 | |||||||
| 1.3 | 13 | 189 | 32 | 1130 | |||||||
| GAT-250A | 0.6 | 6 | 87 | 56.5 | 1995 | 340 | 250 | 3850 | 2250 | 2060 | |
| 0.7 | 7 | 102 | 54 | 1907 | |||||||
| 0.8 | 8 | 116 | 49 | 1730 | |||||||
| 1 | 10 | 145 | 40 | 1412 | |||||||
| 1.3 | 13 | 189 | 36 | 1271 | |||||||
Company Information
Packaging & Shipping
FAQ
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Technical Support |
|---|---|
| Warranty: | 2 Years |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2024-02-15
China factory High Quality 37kw 50HP 8 Bar Fixed Speed Rotary Air Compressor Pm VSD Screw Air Compressor supplier
Product Description
High quality 37kw 50hp 8 bar Fixed Speed Rotary Air Compressor PM VSD Screw Air Compressor
Product Introduction
Promises Every Machine Will Run Well More Than 15 Years
Saving energy is making money !!!
Hengchaowin rotary screw air compressor used germany technology screw(air end ) ,
The same intake valve designed by CHINAMFG Rand,
high Efficient IP54 rated motor,And quoted the high-efficiency inverter fromDenmark.
The air compressor can maintain a stable motor efficiency at any speed,
so it is more energy-saving and power-saving.
Product Parameters
|
Screw group |
5: 6 Gear rotor |
|
|
Compression method |
Continuous, CHINAMFG |
|
|
Compressed air outlet pressure |
0.65-1.0MPa |
|
|
Compressed air outlet temperature |
Air-cooled |
|
|
Compressed air outlet temperature |
10ºC~15ºC higher than the ambient temperature |
|
|
Volume of Lubricating Oil |
About 16.5liters |
|
|
Motor speed |
N=-1200-3600r/min |
|
|
Rated power |
90 kw |
|
|
Air capacity |
V=16.0-12.8 m3/min |
|
|
Weight |
1400 kg |
|
|
Upper air temperature |
45ºC |
|
|
Lower limit of air temperature |
0ºC |
|
|
Fuel consumption |
Exhaust oil content is less than 3PPM |
|
|
Noise level |
78dB(A) |
|
Detailed Photos
Advantage:
1.It adopts the design of large rotor and low speed, and contains 2 independent rotors, which has high efficiency and low noise,The design service life is 30 years.
2. The high-frequency flexible inverter can effectively reduce the magnetic field interference generated by the inverter, and the special heat dissipation design can prevent high temperature shutdown in summer.
3.Colorful touch system, intelligent operation, remote monitoring integrated system, convenient and worry-free.
4.Our machines have reliable quality and warranty is 2 years of the whole machine,5 years of the screw.
5. We have our professinal after sales technician team to instruct you installation and maintenance.
Hot products
1. direct drive rotary screw air compressor
2. energy saving vsd screw air compressor
3. air compressor with air tank and air dryer.
Specification
| HWV-55A | HWV-75A | HWV-90A | HWV-110A | HWV-132A | HWV-160A | HWV-185A | |||||||||||||||||||||
| 10 | 9.6 | 8 | 7.6 | 13 | 12.6 | 11 | 10.5 | 16 | 15 | 13 | 12.5 | 21 | 19.8 | 17 | 16.4 | 24.5 | 23.2 | 20 | 19.4 | 28.7 | 27.6 | 23.5 | 22.8 | 32 | 30.4 | 27.4 | 26.8 |
| 353.1 | 338.976 | 282.48 | 268.356 | 459.03 | 444.906 | 388.41 | 370.755 | 564.96 | 529.65 | 459.03 | 441.375 | 741.51 | 699.138 | 600.27 | 579.084 | 865.095 | 819.192 | 706.2 | 685.014 | 1013.397 | 974.556 | 829.785 | 805.068 | 1129.92 | 1073.424 | 967.494 | 946.308 |
| 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 |
| 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 |
| 55kw/ 75hp |
75kw/ 100hp |
90kw/ 120hp |
110kw/ 150hp |
132kw/ 175hp |
160kw/ 210hp |
185kw/ 250hp |
|||||||||||||||||||||
| 78±2 | 78±2 | 83±2 | 85±2 | 85±2 | 85±2 | 88±2 | |||||||||||||||||||||
| RP2 | RP2 | RP2 | RP2, 1/2 | RP2, 1/2 | RP2, 1/2 | RP2, 1/2 | |||||||||||||||||||||
| AC 380v/415v/220v/480v or 50hz/60hz accpet Customized voltage | |||||||||||||||||||||||||||
| Variable frequency soft star | |||||||||||||||||||||||||||
| 55 | 65 | 72 | 90 | 90 | 110 | 110 | |||||||||||||||||||||
| 1800 | 1800 | 2000 | 2300 | 2500 | 2500 | 3150 | |||||||||||||||||||||
| 1250 | 1250 | 1250 | 1470 | 1470 | 1470 | 1980 | |||||||||||||||||||||
| 1670 | 1670 | 1670 | 1840 | 1840 | 1840 | 2150 | |||||||||||||||||||||
| 1480 | 1680 | 1860 | 2600 | 2900 | 3200 | 3500 | |||||||||||||||||||||
Why Choose Us
HangZhou CHINAMFG Technology Co., Ltd., founded in 1985, in ZheJiang ,China, It is a professional air compressor manufacturer with 30 years of experience in R&D, manufacturing, marketing and service.
After the technical system reform in 2000, the company introduced German advanced CHINAMFG technology, adhering to the German advanced industrial design concept, rigorous manufacturing technology and comprehensive management. We strictly implement ISO9001 international quality system certification and EU CE standard production machines. The performance and quality of our products have been widely recognized and praised by the market, occupying 30% of China’s market share.
Starting to enter overseas markets in 2571, it currently has agents and after-sales teams in North America, Western Europe, South Africa, East Africa and other regions.
Company Profile
Brief introduction of factory:
1. We have been engaged in R D department, production and sales of air compressors for 30 years;
2. Our air compressor products through CE,SGS,ISO certification, with more than 20 invention patents;
3. Our products are exported to 132 countries and regions around the world;
4. Our air compressor provides a 5-year warranty.
If you have specific parameters and requirements for our Rotary Screw Type Air Compressor, customization is available
Customer feedback
Providing high-quality machines is our standard, and satisfying every customer is our pursuit. Over the years, we have won unanimous praise from overseas users for our integrity and high-quality product quality.
Packaging
The air compressor is guaranteed for 1 year and 5 years for the screw(air end) . Warranty time is calculated from machine leave the factory.
After Sales Service
1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
FAQ
Q1: What is your product name?
A:Industrial Energy Saving VSD Oil Lubricating Rotary Screw Air Compressor Machine 22kw 30hp
Q2: Why should I choose you?
1. 24/7 after sales service support in different languages;
2. Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center;
3. Technical training for customers in HENGCHAOWINO air compressor factory or working site;
4. Plenty of original spare parts with proven quality are all available from our central stocks in ZheJiang Province and all distributors’depots;
5. All kinds of technical documents in different languages.
Q3: Can you use our brand?
A: Yes, OEM is available.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Support Online and Local Service |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | No |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-12-26